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Note 

A Numerical Solution for the Laplace Equation 
with Normal Derivative Boundary Condition 

A method is presented for the numerical finite difference solution of the Laplace 
equation with Neumann conditions around the whole boundary. The method is based 
on reducing the Laplace equation to a set of time-dependent partial differential 
equations, using the values of the normal derivatives on the boundaries and solving 
the time-dependent equations until a steady-state solution is reasonably obtained. 

The Laplace equation 

A@=0 (1) 

is generally associated with equilibrium or steady-state problems and is the governing 
equation in a large number of problems. The velocity potential for the steady flow of 
incompressible non-viscous fluid satisfies Laplace’s equation and is the mathematical 
way of expressing the idea that the rate at which such fluid enters any given region is 
equal to the rate at which it leaves it. In the application of the vector and scalar 
potential method to the numerical solution of two-and three-dimensional 
Navier-Stokes equations by Aregbesola and Burley [l] the importance of the 
solution of this equation is mentioned. 

In a simple region the solution may be obtained analytically. This is not always 
possible in regions of irregular shapes and numerical solution is a likely approach. 
When the values of the dependent variable @ are specified throughout the boundaries 
the numerical conditions several computational difficulties are presented as discussed 
in Aregsbesola and Burley [ 11. In this case the Laplace equation has a solution if and 
only if 

i 

v*@dV= 
V 

where S denotes the surface enclosing the volume V, and a solution is obtained to 
within an arbitrary constant. In most cases the gradients of the dependent variable @ 
only are required so that the arbitrary constant is irrelevant. The numerical approach 
must therefore conform with the condition in Eq. (2). 

The usual numerical method of solving Laplace’s equation is to find the finite 
difference approximation to Eq. (1) and that of the associated boundary conditions 
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and solve them iteratively using possibly the successive over-relation iterative method 
(SOR). With this approach probable sources of error are in the finite difference 
representation of the normal derivatives on the boundaries and at corners, especially 
where the normal derivatives may not be continuous. The errors introduced are likely 
to effect the condition in (2) adversely. 

Some of the computational difficulties in the numerical solution of Laplace’s 
equation with normal boundary conditions therefore are ensuring that the boundary 
conditions are satisfied at each stage of the computation so that the condition in 
Eq. (2) is always satisfied and ensuring that a solution to within an arbitrary constant 
is actually obtained. The approach discussed in this work uses the values of the 
normal derivatives and not the difference approximation of the derivatives. The idea 
is to solve Laplace’s equation A@ = 0 by solving the time-dependent problem 

through a system of equations that do not require differencing of the normal 
derivatives of @ at the boundary. 

A similar approach is used by Yanenko [2] to solve Laplace’s equation through a 
system of equations equivalent to that discussed here. These equations are then solved 
by the method of fractional steps. The resulting equations in this work are solved 
using a finite difference scheme iteration method and an attempt is made to obtain a 
close estimate of the optimum value of R that gives a quick convergence. The method 
is tested for solving a potential flow problem in a two-dimensional rectangular region. 

FIN~E DIFFERENCE APPROXIMATION 

The Laplace equation (1) can be reduced to a set of time-dependent partial 
differential equations if variables U, V, W are introduced such that 

and these equations are substituted into the equation 
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the result being 
a2@ a2@ a2@ 
z+7+2=R$+$, 

aY 
(7) 

where R is a positive constant. The parameter R is introduced to play a role 
analogous to that of the relaxation parameter in the SOR method. As a steady 
solution is approached, &D/at, a2@/at2 tend to zero, so that Eq. (7) becomes identical 
to Eq. (1). The boundary conditions imposed on the variables U, V, W are such that 
they are independent of time and since the normal derivatives are specified at these 
points, the boundary values of these variables are obtained from the relations 

a@ 
-=RU, 
ax 

z=RV ?%=RW 
aY ’ a2 ’ (8) 

which are the boundary conditions on Eqs. (3) to (5). 
To improve the accuracy of the computation an interlaced mesh system at 

illustrated in [ 1 ] is recommended. The variable @ is computed at the centre point 
surrounded by points where variables U, V, W are iterated. The finite difference 
approximation of Eq. (1) and the accompanying boundary conditions are 
straightforward and can be found in any standard text. The finite differencing of Eq. 
(3) will be considered; those of Eqs. (4) and (5) are similar. Centred at time n, 
Eq. (3) reduces to 

(@V + 1, J, K) - @(I, J, K)),/Ax 

= 0.5RV-U 4 K),+ ,,2 + U(Z, J, K),,- 1/J 

+ WV, J, K),. ,,2 - W, J, K),- &It, (9) 

where At is the time increment and Ax is the space increment in the direction along x- 
axis. Similarly the finite difference approximation of Eq. (6) is 

(U(Z,J,K)-U(Z-l,J,K))/Ax+(V(Z,J,K)--(Z,J-l,K))/Ay 

+(W(I,J,K)- W(Z,J,K- l))/Az], 

= (@(Z, J, Q+ , - W, J, ~M/‘At, (10) 

where n is the nth time iteration. On the boundaries the finite differencing of the 
normal derivatives is not necessary; only values of the variables U, V, W are needed 
for the computation. 

ROUGH ESTIMATE OF THE OPTIMUM VALUE OF THE PARAMETER IR 

Consider the Laplace equation in one dimension, 

a2@ -- 0 axx2- ’ for 0 <x < 2, 
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with 

a@ 
ax= 1, at x=0,2. 

The solution of Eq. (11) with condition (12) is 9 = x, for 0 Q x < 2, plus an arbitrary 
constant. These equations can be replaced by the set of equations 

-+JR+acT CT@ 
LJX at ’ 

au a@ 
-=- 

ax at 
for 0 <x < 2, 

and 

$=cIR=l at x = 0,2. 

(13) 

(14) 

If @,,, denotes the value of the nth time iteration of @ at point Z, the finite difference 
approximation of Eqs. (13) and (14) are respectively 

(@PI,,+, - @I-*,n+,)lh = 0.5Rv-L+, + U,,“) + (%n+l - %)/k~ (16) 

WI, *,n - U,,“)lh = (@I,“+ 1 - @r,J/k (17) 

where h=Ax and k=At. 
By applying the finite difference scheme (17) and then (16) and continuing in that 

order, Eq. (16) can be written in the form 

u,,,,, = PU,,, +K,“+I + YZI,ll~ 
where 

p = (2 - 2Rk)/(2 t Rk), 

y = k/?/h = 2k2/h2(2 t Rk), 

Y,,n=%+,,,--,,,=h s , I 1 1.n 
and 
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Thus 

U,,ntl =PU,,, +Ph [~],,.+~+yhz([~,,~+,+[ g,,. (19) 

Also from Eq. (17) we obtain 

@ ,,n + 1 - @,-I,,,+, = @,,n - @,-,.n + WJ,,,,, - 2UI.n + U,-d/h 

giving 

[Z],..+,=[$],.,+k[ s-j,,n* (20) 

w/w,,, and (i3*U/i?x*),,, exist, since they are computed from the initial values of 
Co and u, o. As a result from Eqs. (20) and (19), (M/ax),,, and then U,,, exist. 
Similarly (&U/ax'),,,, (&P/ax),,, and U,,, exist since U,,, exists, and so on. It 
follows that (~?'U/i?x'),,, , (M/ax),,,+ i and U,,, + 1 exist. 

Since @ is differentiable, lim ,,+,(&P/c?x),,, = @@/8x), and so from Eq. (20), 

i?*U 
!If", . L-1 ax2 

Thus from Eq. (19) 

lim WI,“+ 1 - Pu,,,) “‘IX 

giving 

u,+-[g],+-[ ;$I,. (21) 

If 

then 

Iu,l=wl(l -P)* (22) 

Equating y/( 1 -p) to 1 reduces the variation between M and U,,, to a minimum 
during the iterations. Thus a value p,, of p corresponding to 1 = y/( 1 -po) is very 
close to the optimum value of p that gives the fastest rate of convergence. Thus 

PO = 1 - y, (23) 
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giving 

(2 -R,k)/(2 + R,k) = 1 - 2k7h2(2 + R,k). 

Hence 

R, = k/h,. (24) 

This result tested by solving Eqs. (16) and (17) with h = 0.1 and k = 0.025 for 
various values of the parameter R. The results show that R = k/h2 = 2.5, in this 
problem, is the optimum value of in the one-dimensional problem. 

When two or three space coordinates are involved a similar analysis can be carried 
out as follows. Consider Eqs. (6) and (3) to (5). These equations can be written in the 
forms 

@ /.nt 1 = @,,n + k(V VI,,, 
and 

u I.n+ 1 =P”Uf*, + YlA,,,,, 
V,,n+ I= P”V,., + ~2Bor, 

w&n+ I = P”wK.il+ Y3 Ctc.n, 
where p is as defined before, 

v = (UT v, W), 
Ax=h, Ay = d, Az==m, 

A,,, = hi@,, I.nt 1 - @,a+ 1 + P VI,,,., - P %.,,I, 

BLtl = wJ+Ln+ I - @.I.,+ 1 + P V),+ 1.n - P VLlr 

G,, = ml@Ktl.ntI - @kntL + P V),, I.n - P V),A 
and 

y, = 2k2/h2(2 + Rk), 

y2 = 2k2/d2(2 + Rk), 

y3 = 2k2/m2(2 + Rk). 

Following an argument similar to that used, before, it can be shown that 

Thus 

1 < Y,l(l -PI, 1 < Y*l(l -PI, 1 < YAl -PI* 

1 <min(y,Ty27y3Hl -PI. 
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By equating min(y,, yz, y,)/(l -p) to 1, an estimate of the optimum value of R can 
be obtained as 

R, = min(k/h*, k/d*, k/m’). (25) 

Given Ax, Ay and AZ, the stability and rate of convergence depend on At. An 
increase from zero in the value of At improves the rate of convergence up to certain 
stage but a further increase in the value may lead to instability. However, it was not 
possible to obtain a mathematical expression for the stability condition based on At. 
For the test problem stability is possible for 0 < At2/Ax2 < 0.5. 

APPLICATION TO A TWO-DIMENSIONAL POTENTIAL FLOW 

The method is applied to solve a potential flow in a rectangular region in which 

V2@ = 0, for 0 < x < 2, 0 < y < 2, (26) 

subject to the boundary conditions 

a@ 
---Z 
aY 

0, for 0 <x < 2, y=O, 

0 <x < 1.5, y=2; (27) 

a@ 
-----=I 
aY ’ 

for 1.5 < x < 2, y = 2; 

a@ 
-= 
3X 

0, for 0.5 < y < 2, x = 0; 

a@ ---cl 
ax ' for O(y(O.5, x=0. 

The whole region is subdivided into 20 x 20 meshes with 21 X 21 mesh points such 
that Ax = Ay = 0.1. For each problem and in each circle of iteration maximum 
variation of @, max 1 Qn+, - @,,I, between two successive iterations in the whole 
region is computed. Various values of At ranging from l/80 to l/15 with the values 
of the parameter R ranging from 1 to 5 were used for the computation. For a 
particular value of At it was found that the optimum value of R that gives the fastest 
rate of convergence is R = At/Ax* as estimated earlier. 

The rest&s obtained by the SOR method and the method discussed here show that 
the variation using the former method tends to zero faster than that of the latter. The 
values of max 1 Qn+, - @,,I when n = 40, 120, 300 for R = 5 and At = 0.05 are 
3.479 x 10-3, 3.95 x 10m4 and 2.7 x 10P6; those from the SOR method are 
2.626 x 10-3, 3.95 x lo-’ and 6.00 x lo-’ respectively. However, from the 
computation of the values of max 1 V*@ 1, it was found that the method discussed here 
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performs better. For n = 50, 100, 200, 400, the values of max IV2@I are 0.2793, 
0.0687, 0.0043 1, 0.000023 and 0.000011; the values from the SOR method are 
0.2055, 0.0123, 0.00048, 0.00033 and 0.00033, respectively. It may be pointed out 
that the ultimate goal of the numerical solution is to get a solution that makes 
max IV’@I =O. 

While the variation of max ) @,,+ , - @,,I tends to zero more quickly using the SOR 
method, with the method discussed here, the max 1 V2@) values are smaller than the 
corresponding values obtained from the SOR method when n is large. 

REFERENCES 

I. Y. A. S. AREGBESOLA AND D. M. BURLEY, J. Cotnput. Phys. 24 (1977). 398. 
2. N. N. YANENKO. “The Method of Fractional Steps,” Springer-Verlag, New York/Berlin, 197 I. 
3. G. D. SMITH, “Numerical Solution of Partial Differential Equations.” Chap. 5, pp. 146-15 I. Oxford 

Univ. Press. London/New York/Toronto, 1971. 

RECEIVED: May 2, 1978: REVISED: January 14, 1980 
Y. A. S. AREGBESOLA 

Department of Mathematics 
University of Ife 

Ile-Ife, Nigeria 


